К основному контенту

Вода из воздуха? Это реально!

Альтернативный метод добычи питьевой воды предложил Яги и его команда. Для извлечения воды из воздуха они посоветовали использовать металл-органические каркасы (МОК).
Яги, один из создателей МОК, два года назад нашел, что похожий материал, состоящий из циркония и адипиновой кислоты, средства для удаления накипи, поглощает не водород, метан либо иные виды газов, а молекулы воды. По своей структуре они похожи на пчелиные соты.
МОК представляет из себя сложный полимерный материал, обладающий очень высокой пористостью и прочностью. МОК используют сегодня для улавливания и удержания водорода либо углекислоты. Но Яги заметил, что если изготовить их из циркония и адипиновой кислоты, то они будут улавливать не газы, а молекулы воды. Именно это дало ему смелость представить, что таким методом можно извлечь воду из воздуха.
Яги вместе с разработчиками из MIT создал довольно простой и доступный «генератор воды». Работает он крайне примитивно — «песок» из частиц МОК поглощает воду из воздуха, а свет и тепло Солнца, направляемые на него системой зеркал, заставляют пары воды покинуть их и сконденсироваться в сосуде, подключенном к этому опреснителю.
Простой и недорогой «генератор воды» может вырабатывать около 3-х литров воды за половину дня при присутствии даже в довольно сухом воздухе с 20-30 процентами влажности. Но Яги уверен, что структуру МОК можно улучшить, и тогда устройство будет работать в два раза эффективнее.

Комментарии

Популярные сообщения из этого блога

Древесный уголь как удобрение

В Канаде выбросы аммиака увеличились на 22 процента с 1990 года и  90 процентов производятся в сельском хозяйстве из навоза, навозной жижи и удобрений. Уменьшение  этого загрязнителя - без ограничения удобрений и роста продовольствия для нашего растущего населения мира - является ключом к устойчивому будущему. Исследователи использовали канадский источник света в Университете Саскачевана, чтобы изучить, как газообразный аммиак взаимодействует с древесным углем в естественных условиях.  По словам Лемана, «уникальные конечные станции в CLS отлично подходят для такого вида азотной рентгеновской спектроскопии». В исследовании Хестрина и Лемана выявлена ​​способность древесного угля улавливать азот из переносимого по воздуху аммиака посредством образования ковалентных связей, которые могут обеспечить долгосрочное удобрение с медленным высвобождением для производства полевых и тепличных культур.  Предыдущие исследования показали, что эти реакции происходили между аммиаком и скон

Технология производства торфо-сапропелевого сорбента

Центр по сапропелю на основе сапропеля и торфа Эстонии и Тюменской области разработал сорбирующие нефть гранулированные и таблетированные материалы.  Данные сорбенты применяются для очистки сточных вод от нефтепродуктов, растительного масла, ПАВ, СОЖ, тяжелых металлов и радионуклидов на последней ступени очистных сооружений автомоек, СТО, загрязняющих производств, прачечных, дождевого и промывочного  стока с территорий  автотранспортных предприятий? нефтебаз и АЗС. Торфо-сапропелевый сорбент засыпается в кассету фильтра или секцию очистных сооружений на 80-85%  вмещающего объема. При соприкосновении с водой сорбент набухает и увеличивается на 10-15%, заполняет весь объем кассеты или секции. Кассетой для секции может служить металлический нержавеющий каркас со стенками из мелкой ячейки. Сорбент может быть помещён  в секцию из полимерной или капроновой сетки. Во избежание протекания загрязненной жидкости вокруг фильтра и сорбента, его выполняют с вогнутой внутрь стенкой, направле